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A new mixed-valence hexanuclear manganese(II,III) com-
plex, [Mn6O2(O2CPh)8(L)3] (HL = 1-phenyl-3-pyridin-2-yl-
propane-1,3-dione), has been synthesized and characterized
structurally and magnetically. The complex contains a new
[MnII3MnIII3O2]

11þ structural topology. The frequency depend-
ence of out-of-phase component in alternating current magnetic
susceptibilities for the complex indicates superparamagnetic be-
havior.

Polynuclear manganese clusters have received considerable
interest in recent years. Mn clusters often exhibit large, and
sometimes abnormally large, spin values in the ground state,
and combined with a large anisotropy have led some of these
species to be single-molecule magnets (SMMs).1,2 SMMs are at-
tracting extensive attention because they represent nanoscale
magnetic particles with a well-defined size. SMMs display slug-
gish magnetization relaxation phenomena such as magnetization
hysteresis loops and frequency-dependent out-of-phase alternat-
ing current (AC) magnetic susceptibilities.3 The remarkable
magnetic properties of an SMM arise from its high-spin ground
state (S) split by a large negative axial zero-field splitting (D)
which results in an anisotropy energy barrier of KV ¼
jDjSz.2,4,5 The first reported SMM was [Mn12O12(O2CCH3)16-
(H2O)4].2HOAc.4H2O with an S ¼ 10 ground state and a neg-
ative zero-field splitting of �0:5 cm�1. Since then, a number of
SMMs, containing Mn,5–9 V,10 Fe,11 Co,12 Ni,13 and mixed-
metal systems,14 have been reported with S values ranging from
3 to 51/2. We herein report a new complex which contains a
[MnII3MnIII3O2]

11þ core and shows the slow magnetic relaxa-
tion in AC magnetic measurement.

A solution of [Mn3O(O2CPh)6(py)2(H2O)]
15 (0.498 g, 0.460

mmol) in CH2Cl2 was treated with HL (1-phenyl-3-pyridin-2-yl-
propane-1,3-dione) (0.169 g, 0.751mmol) for 10min, after care-
fully layered with hexane/Et2O (1:1) solution, and the solution
slowly produced black crystals of [Mn6O2(O2CPh)8(L)3].
1.5CH2Cl2.Et2O.H2O (1.1.5CH2Cl2.Et2O.H2O) in yield of
53%.16 Vacuum-dried solid was analyzed as 1.H2O.

17 Complex
1.1.5CH2Cl2.Et2O.H2O crystallizes in the monoclinic space
group P21=n. The crystal structure of complex 1 is shown in
Figure 1. The structure of 1 reveals a [MnII3MnIII3(�4-O)2]

11þ

core which comprises a central, distorted cubane-like
[MnII2MnIII2O2(OR)(O2CR)], and either side of which is attach-
ed one MnIII (Mn1) and one MnII (Mn4) ions by two �4-O

2�

ions. A �3-PhCO2
� group is ligated through both its O atoms,

with O15 terminal to Mn2 and O16 bridging Mn3 and Mn5.
The oxidation states of manganese in complex 1 were assigned
by bond valence sums and Jahn–Teller elongation, which
Mn2, Mn3, Mn5, and Mn6 are MnII, MnII, MnIII, and MnIII,
respectively. Peripheral ligation around the core is provided by
seven PhCO2

� groups in their familiar syn,syn-�1:�1:�2 binding

modes, one PhCO2
� in the fairly rare �1:�2:�3 mode, two

L� ligands in �1:�2:�1:�2 mode, and one L� ligand in
�1:�3:�1:�3 bridging type. In addition, although a weak interac-
tion in Mn2–O23 at a distance of 2.751(3) Å, it was considered
as the seventh coordination position around Mn2.

The solid-state direct current (DC) magnetic susceptibility
(�M) of 1.H2O was measured in the 2.0–300K range in a
1 kG field, and it is plotted as �MT vs. T in Figure 2. The
�MT value at 300K is 16.61 cm3 mol�1 K, lower than the
22.12 cm3 mol�1 K value expected for a MnII3MnIII3 complex
with noninteracting metal centers with g ¼ 2:0, indicating the
presence of dominant antiferromagnetic exchange interactions
within complex 1.H2O. �MT decreases only slightly with
decreasing temperature until �30K and then decreases more
rapidly with decreasing temperature to 5.91 cm3 mol�1 K at
2.0K. The low temperature value suggests a small but nonzero
ground-state spin (S) for the complex. The rapid decrease
observed in �MT value at 2.0–30K range is most likely due to
zero-field splitting effects and perhaps weak intermolecular
interactions mediated by the �-stacking in the crystal structure.

To identify the ground state, magnetization (M) data were
collected in the 2.0–4.0K and 1–20 kG ranges (Figure 3). The
results were fitted by using the program ANISOFIT18 that
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Figure 1. The structure of complex 1. The benzoate rings and
solvate molecules are omitted for clarity.
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Figure 2. Plot of �MT vs temperature at 1.0 kG for complex
1.H2O.
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assumes only the ground state is populated, includes axial zero-
field splitting (Dz) and Zeeman interactions, and incorporates a
full powder average. We used only low fields (�20 kG) to avoid
problems associated with MS levels from excited states with
higher S values crossing with the ground state, which would lead
to an erroneously high value for the ground-state S. The fit (solid
lines in Figure 3) gave S ¼ 7=2,D ¼ �0:56 cm�1, and g ¼ 1:98.
The fits for S ¼ 5=2 and 9/2 were obtained unreasonable g

values of 2.70 and 1.57, respectively.
To investigate whether 1.H2Omight be a SMM, AC suscep-

tibility measurements were performed in a 3.5G AC field
oscillating at 250–1500Hz and with a zero applied DC field.
(Figure 4) At temperatures below 3.5K, there are significant
increases of the out-of-phase signal, and it is possible maxima
may occur below 1.8K. The fresh sample of complex 1 also
shows identical frequency dependence of out-of-phase signals
in AC susceptibility, which the solvation would not affect the
relaxation behavior. This frequency dependence of the AC sig-
nals suggests that complex 1.H2O is a SMM.

In summary, a hexanuclear mixed-valence MnII,III complex
was prepared by using the pyridine-containing �-diketone and
which showed superparamagnetic behavior in AC susceptibility
measurement. Low-temperature magnetic measurements to ob-
serve quantum behaviors are currently underway.

The magnetic measurements were obtained from SQUID
(MPMS XL-7) in NSYSU and we thank the National Science
Council of Taiwan (NSC-94-2113-M-006-011) for financial
support.
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Figure 3. The reduced magnetization of 1.H2O plotted as
M=N� versus H=T at 1 ( ), 5 ( ), 10 ( ), and 20 ( ) kG in
eicosane.
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Figure 4. Plot of out-of-phase (�M
00) vs temperature of com-

plex 1.H2O.
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